

Farm, Conservation and Energy Act

- Biomass Crop Assistance Program (BCAP)
- Rural Energy for America (REAP) Program
- Repowering Assistance
- Biomass R&D

Fuel Type	Unit	Cost per Unit	MMBtu per Unit	Cost per MMBtu	Average Seasonal Efficiency	Delivere d MMBTU	Cost pe MMBtu After
Wood Chips	ton	\$50	9.9	\$5.05	65%	6.4	\$7.7
Natural Gas	therm	\$1.10	0.100	\$11.00	90%	0.090	\$12.2
Wood Pellets	ton	\$150	15.7	\$9.57	75%	11.8	\$12.7
Switchgrass Pellets	ton	\$140	14.560	\$9.62	75%	10.920	\$12.8
Corn	bushel	\$4.50	0.331	\$13.59	80%	0.265	\$16.9
LP Gas	gallon	\$2.20	0.092	\$23.91	90%	0.083	\$26.5
Electricity	kwh	\$0.10	0.003	\$29.31	99%	0.003	\$29.6
Fuel Oil (No.2)	gallon	\$3,30	0.138	\$23.91	80%	0.110	\$29.8

- Agrecol Seed Company
- America's Best Greenhouse
- State of Wisconsin Oakhill Correction Facility
- Pecatonica Elementary School

What did we learn? Biomass saves a lot of money

- Agrecol 52%
- America's Best Greenhouse 62%
- Oakhill Correctional 15%
- Pecatonica Elementary 39%

Avg.Fuel Savings 42%

Ed & Carol Knapton, America's Best Greenhouse Cottage Grove,WI

Estimated costs of pelleted Switchgrass

- \$50/ton baled (assume \$100/rent & 5 tons/acre yield)
- Avg FOB farm \$70-90/ton (assume \$100-200/acre profit)
- Trucking costs: \$4.68/ton (30 miles @ \$3.75/loaded mile)
- Avg FOB pellet mill \$74.68-\$94.68/ton
- Costs to pellet \$40-\$60/ton
- \$114 \$154/ton pelleted

Growing switchgrass pellets on marginal land

- \$80/ton x 5 ton/acre = \$400/acre gross profit
- \$150/acre (land rent + cost)
- = \$250/acre net profit

Potential economic impact of advancing grass energy

100,000 acre biomass project =

500,000 tons biomass @\$140/ton

\$70 million new, local dollars

\$70-150 million <u>not exported</u> out of state for fossil fuel

Proposed business model

- Grow switchgrass on marginal acres
- Marginal acres growing corn now; not sustainably profitable
- Net income (\$250/acre) sufficient for landowners to choose switchgrass on marginal acres if long term contract
- Pelleting: Ease of handling, transporting, storing

Start Now!

Expand biomass heating now – begin building a feedstock supply chain for future biopower and/or biofuel?

Corn to Grass - Better for water quality

"If an acre of corn grown on highly erodible land were converted to grass, soil losses would be reduced by at least 94%. Reduction in phosphorus runoff would be similar."

> Cite: Panuska et al., 2007 UW Publication #A-3830.

Pelleting Process

- 1. 2. Receive chopped biomass Fractionate stem from leaf <3% ash content
- 3. Moisture pretreatment on working floor of plant
- 4.
- Move to ingredient live bottom hopper bin Create recipe mix using computer automation 5.
- 6. Elevate to tower surge hopper
- 7.
- Hammer mill to required particle size Cool pellets in counter flow cooler (dust to briquette line) 8.
- 9. Screen fines (fines to briquette line)
- 10. Bag 11. Ship to market

