ALGAE TO BIOFUEL OPPORTUNITIES AND CHALLENGES

Vikram M Pattarkine, PhD CEO / PRINCIPAL (PARTNER) **PEACE USA** Mechanicsburg, PA 17050

Discussion Points

Why pursue algae?
Algae process challenges
Potential solutions
Concluding remarks

Why Pursue Algae?

- Fastest growing biomass
- No adverse impact on environment, food supplies
- Can grow using...
 - Waste gas (CO₂)
 - Wastewater
 - Waste land
 - Waste energy

Potential of Algae to Replace Petroleum and other Biofuels

- Petroleum came from algae
- Highly efficient organism
- Can contain up to 60% lipids
- Biomass can be digested for methane
- Carbon-neutral energy source

Algae Can Be 1000X More Productive than Corn

Gallons of Oil /Acre/ Year

Corn	15
Soybeans	48
Safflower	.83
Sunflower	102
Rapeseed	127
Oil Palm	.635
Micro Algae .	
	(actual)
Micro Algae	. 5000-15000
0	(potential)

Source: Cultivating Algae for Liquid Fuel Production Thomas F. Riesing, Ph.D.

Process Challenges

- Must bring together
 - Light
 - CO₂
 - Nutrients
 - Water
- Should have the least possible footprint
- Low-Cost Oil Extraction
- Energy-Efficient Continuous Production

= Renewable Oil Anywhere, Any time

Process Challenges

- How much land?
- How much water?
- Let's do the calculations

Assumptions

- Algae biomass concentration = $0.25 \text{ kg/m}^3 (\text{g/L})$
- Lipid content = 30%
- Lipid density = 920 kg/m^3
- Depth of pond = 0.5 m
- Harvesting rate = 25%

 $10,000 \text{ L/d} = 10 \text{ m}^3/\text{d} = 2,642 \text{ gal/d} = 63 \text{ barrels/d}$

Therefore, algae biomass required =

10 m³/d x 920 kg/m³ x (100 g biomass / 30 g lipid)

= 30,667 kg/d = 30.7 T/d

To harvest 25% biomass every day we must maintain 30.7 T/d / 0.25 = 123 T of biomass in the system

How much water?

 $(123 \text{ T x } 1000 \text{ kg/T}) / (0.25 \text{ kg/m}^3)$ = 490,000 m³ of water = 490 ML = 129 MG

How large a footprint?

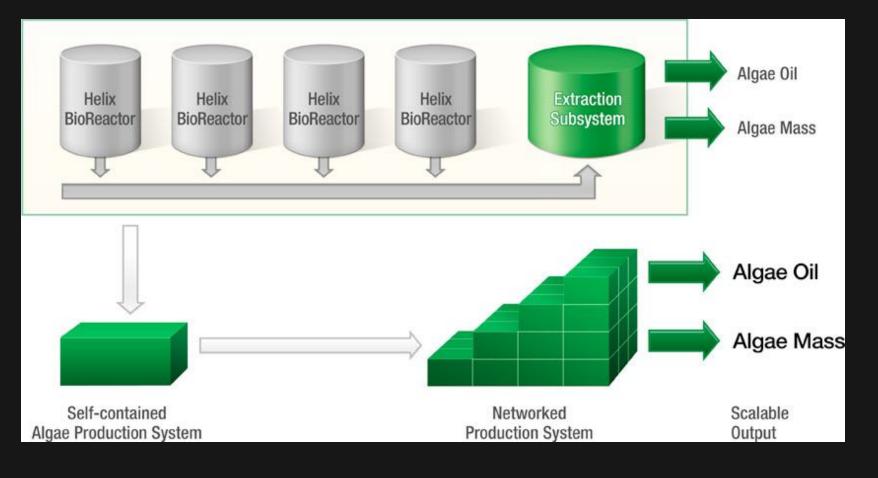
490,000 m³ of water / 0.5 m depth = 980,000 m² = 98 ha = 244 ac Biomass productivity = (30,667 kg/d) / (980,000 m²) = 0.031 kg/m²/d = 31 kg/m²/d

Source: http://www.tomorrowisgreener.com/images/biofuelfarms.jpg

OriginOil's PhotoBioReactor (PBR)

Optimized Light Delivery

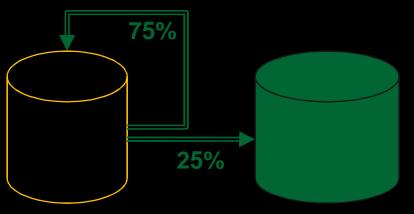
- Multiple growth layers
 - Small footprint
- Low energy
 - Energy-efficient lights
- Frequency-tuned lights
 - Optimum light absorption for efficient photosynthesis
- Optimum flashing intervals


Quantum Fracturing[™]

PEACE USA

 OriginOil's method for efficient and rapid delivery of CO₂ and nutrients

Modular/Scalable Growth System



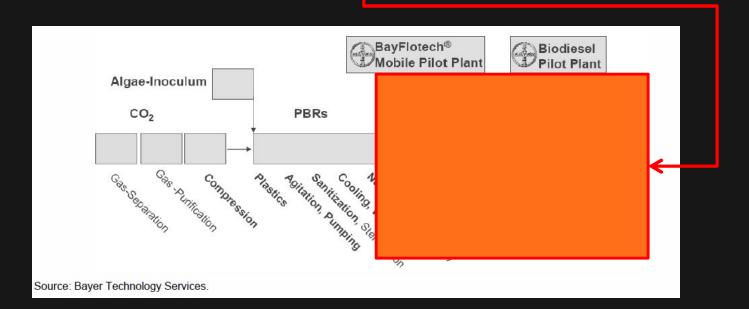
Cascading Production

- Continuous production harvest part of new growth use remaining as seed for new batch
- No lengthy incubation period for every new batch
- Periodic harvest of algae oil and mass

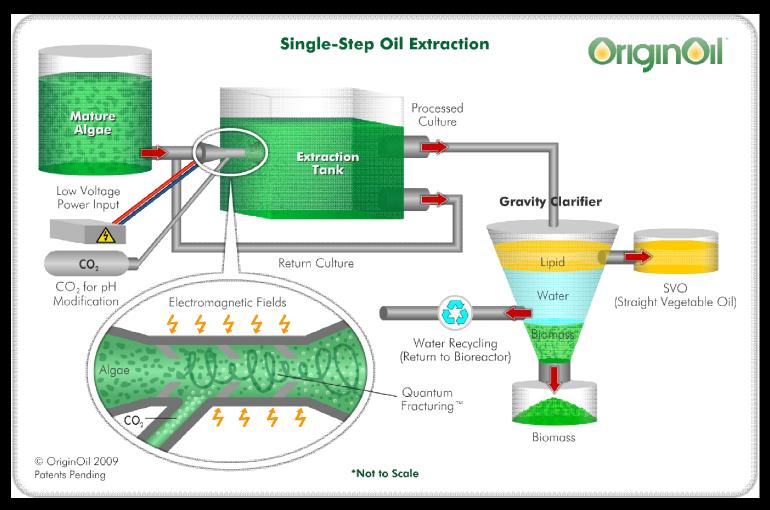
Cascading Production Example

The Extraction Challenge

- Algae grow suspended in large volumes of water
- Need cost-effective and energy-efficient dewatering
- Must separate lipid from biomass efficiently
- Need to recycle nutrients and water conserve resources


Current Technology

Dewatering (<10% moisture)</p>


- Filtration
- Centrifugation
- Spray Drying
- Lipid Extraction
 - Mechanical (pressing/extrusion)
 - Chemical (solvent extraction)

The Extraction Challenge

- Conventional processing needs dewatering (<10% moisture) before lipid extraction
- High energy cost for dewatering!

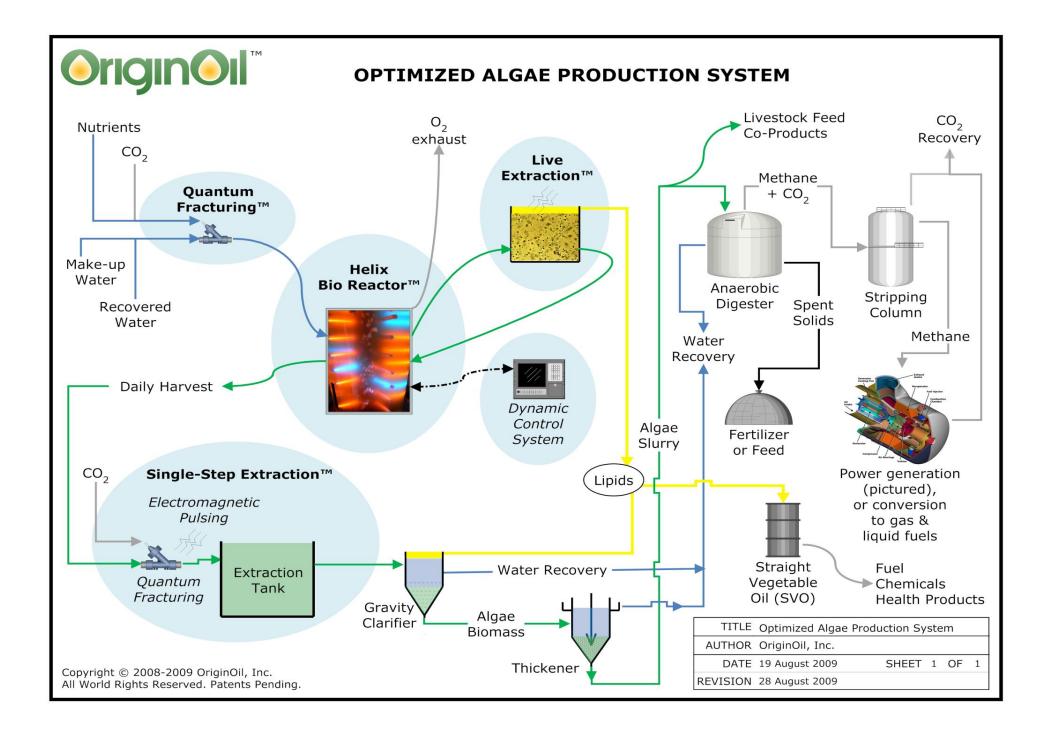
Low-Cost Oil Extraction

OriginOil Extraction Process

- Obviates need for dewatering before lipid extraction
- Approximately 10 times less energy-intensive than conventional process
- Enables recycle nutrients and water resources conserved!

Potential Solutions to Challenges

- Optimized Light Delivery
 - Helix Bioreactor
- Optimized CO₂ and Nutrient Delivery
 - Quantum Fracturing
- Minimal Installation Footprint
 - Helix Bioreactor




Potential Solutions to Challenges

- Low-Cost Oil Extraction
 - Process Innovation
- Energy-Efficient Continuous Production
 - Process Innovation

= Renewable Oil Anywhere, Any time

Concluding Remarks

- Worldwide market demand for biofuels projected to grow to \$81 billion by 2017 (Clean Energy Trends 2008)
- Algae has the greatest potential
 - High oil content
 - Rapid growth rate
 - Can be converted into liquid fuel and other value added products
- Breakthrough technology being developed to grow algae efficiently and cost-effectively and convert it into renewable biofuel
- On the ground floor of a world-changing energy market

Concluding Remarks

- Economics of algae are complex and challenging
- Current profitability requires:
 - Pursuit of high value co-products
 - Co-location with beneficial site hosts
 - Combine for greatest gain?
- Pursuit of fuel will require:
 - Continued process optimization at all stages
 - Very strong preferences
 - Petroleum price increases
- With careful planning, algae biofuel can be viable

THANK YOU!

QUESTIONS? COMMENTS? Vikram@PEACEUSA.Net

